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Abstract 

The modified realizability topos is the semantic (and higher order) counterpart of a variant of 
Kreisel’s modified realizability (1957). These years, this realizability has been in the limelight 
again because of its possibilities for modelling type theory (Streicher, Hyland-Ong-Ritter) and 
strong normalization. 

In this paper this topos is investigated from a general logical and topos-theoretic point of 

view. It is shown that Mod (as we call the topos) is the closed complement of the effective 
topos inside another one; this turns out to have some logical consequences. Some important 
subcategories of Mod are described, and a general logical principle is derived, which holds 
in the larger topos and implies the well-known Independence of Premiss principle for Mod. 
@ 1997 Elsevier Science B.V. 

1551 Math. Subj. Class.: 03F55, 03G30, 18B25 

0. Introduction 

The notion of “modified realizability” originates with Kreisel’s [6] (see also [7]). 

While Kreisel intended to give a consistency proof for the system HAO and, accord- 

ingly, defined a straightforward extension of Kleene’s realizability to this typed system, 

today’s meaning of the term ‘modified realizability’ derives from Troelstra’s “collapse” 

of this realizability [13]. Let me briefly indicate what this is. 

In Kreisel’s notion, one defines for each formula cp of HA” a type r(p); real- 

izers of cp have to be found in this type. For example, r(3x”.cp) = o x z(cp) and 

z(cp --+ +) = r(cp) -+ r(G). 
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Now it is possible to interpret the whole of HA” in first-order arithmetic HA, using 
the model of hereditarily recursive operations. Then one expresses Kreisel’s realizabil- 
ity in HA, and since HA is a subsystem of HA”, one obtains another realizability 
interpretation for HA, very different from Kleene’s. 

The resulting interpretation is formulated with ‘potential’ and ‘actual’ realizers; the 
set of potential realizers of a formula cp is the collapse of the type r(q), and the actual 
realizers are a subset of these. In the following formal definition, U,(q) and I!.&(V) are 
the sets of, respectively, the actual and potential realizers of cp, and for subsets A,B of 
N we use the abbreviations 

Then by induction, the first clause for prime formulas: 

In this definition, the intersection in the clause defining U,(cp + tj) reflects Kreisel’s 
definition that r(cp + $) = r(q) --f r(ll/) i.e. realizers of an implication must be global 

elements of this function type. Of course, the clause is also reminiscent of the definition 
of intuitionistic implication in a Kripke structure: cp + I/ is only true in a node p if 
for all q 2 p, if rp is true in q then $ is true in q. 

The following observation is basically due to Troelstra. 

Proposition 0.1. Suppose our G6del numbering of partial recursive functions and our 

primitive recursive, bijective pairing is such that 

rp&) = 0 for all n, (0,O) = 0. 

Then 0 E L#,(cp) for all cp. 

From this observation, Grayson, in an unpublished manuscript [l], gave a sketch of 
how to build a modified realizability tripos and consequently a topos, in the style of 
Hyland’s [2] effective topos. 

In my thesis [9] I filled in some details left blank by Grayson, and I observed that 
the Grayson topos is a sheaf subtopos of “the effective topos built over Set”‘. 
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In the nineties, interest in modified realizability was revived. Streicher [12] links 
the idea of actual and potential realizers to an interpretation of fully intensional type 
theory, via his category of modified assemblies. 

Hyland and Ong ([4], see also [8]) give an account of modified realizability toposes 
based on conditional partial combinatory algebras. They develop some theory, analo- 
gous to [2], and record the, at first sight, surprising fact that there are two embeddings 
of Set into the modified realizability topos: one is the “logical” one, defined from 
the logic of the tripos; and the other is the direct image of the embedding of Set as 
TT-sheaves in the topos. 

In this paper, the modified realizability topos is studied for the special case of the 
partial combinatory algebra N (although the results will generalize to any pea). In 
this case, an analysis is possible by considering the topos Czfs.,., the “effective topos 
built on sheaves over Sierpinski space”. Since there is no construction of &fs._. over 
a conditional partial combinatory algebra, this analysis is not possible in the more 
general context of [4] (but see Remark 4.3 at the end of this paper). 

The modified realizability topos (here called Mod) and the effective topos 88 are 
both subtoposes of &fl._. : 6” is the open subtopos of &fl.,. determined by the 
one non-trivial subobject of 1, and Mod is its closed complement. There is a relation 
with the open and closed points of Sierpinski space, expressed by pullback diagrams 
of toposes. Also, the two embeddings of Set into Mod arise from the two points of 
Sierpinski space. 

The situation gives rise to many internal topologies in E”fs.,.. In terms of these, we 
can characterize a slight modification of Streicher’s Modified Assemblies, and arrive 
at a generalization of Troelstra’s “Independence of Premiss” principle [13]. It is also 
shown that Mod is, like many realizability toposes, an exact completion [ 1 l] and there 
is a characterization of the full subcategory of Mod on the projective objects. 

1. Definition of Mod and basic properties 

This section contains some tipos-theoretic terminology. In sofar as this remains 
unexplained, the reader is referred to [3]. 

Convention. From now on we assume the conditions of Proposition 0.1 to hold, i.e. 
0 +x = 0 (that is how we will write partial recursive application) and (0,O) = 0. We 
also use the abbreviations A + B and A x B for subsets A, B of N, as defined in the 
introduction, and (.)s, (.)I for inverses of the pairing: z = ((z)o,(z)i). 

Let R be the set {U=(U,,~)E~(N)~(U~~~&OO 4). For U,V ER we put 

u + V = (U, 4 V, n y -+ VP, y --f VP). 

For every set X we define a preorder on RX by 

CP t- * iff n (V(X) + +(x))~ z 0. 
XEX 
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Apart from + we have the following operations on RX: 

cp A ti = nx.(cp(x), x $(x)Cl, 4D(x)p x $(x)p), 

v v ti = nx.(cp(x), + w>a, (P(x)p + $(x),)3 

where, forA,BCN, A+B=({O} xA)U({l} x B). 
Moreover, we have the elements TX = LX. (N, N ) and l_x = Lx. (8, N ). 

Proposition 1.1. With the structure (+, A, V, TX, IX), RX is a Heyting pre-algebra. 

Given f :A' -+ Y there is a order-preserving map RY 5 RX. This map has both 

adjoints. Define for 9 E RX: 

Vf (cp) = AY. 

( 
n N -+ &>o, n N + cpG>p 

.f%)=y f(x) = Y ) 

3f(qQ)= AY. 
({~~~{i~o~>~ 

i ( 

/(tJ_i~(x)o.~~~=y~(x)p 
) 

p f-'(v) # 0, x x 

(03 {Olh P(Y) = 0, 

where i is some fixed, standard code for the identity function. We have that 3f -1 Rf -I 

Vf; by way of example I show the first adjunction. 

Suppose 3f (cp> b II/, say n E flyE y Vf (cp)(y) + tie Then 

for let m E cp(~)~, then (i, m) E 3f (cp(f (x))a so n.(i, m) E $( f (x))ll; same calculation 

for m E (Pi; therefore q I- Rf($). 

Conversely suppose q k Rf($), say n E n,,x(cp(x) + $(f (x)))a. Then 

w = hz.(z)O.(n.(z)l) E n (3fw(y) =+ ~/(YN~ 
YEY 

for let y E Y, z E Elf(q)(y),. Then f-‘(y) # 0 and z is of form (i,(z)l) with 

(z)l E UfcxjEy cp(xb whence 

n.(z)1 E u bw-(x)>~ = t4Yhz 
fb)=Y 

so w.z = (z)o.(n.(z)l) = n.(z)1 E +(y)@. Moreover, if z E 3f(q)(y), then either 

f-‘(y) = 0 in which case z = 0 = (O,O), n.0 is defined since we may assume X # 0 

(if X = 8 there is nothing to prove) and n E nxEX qua + t&f(x)),, whence w.z = 

O.(n.O) = 0 E I&)~; or f-‘(y) # 0 in which case (z)o E {i,O} and (z)~ E (Pi for 

some x with f(x) = y. Then n.(z), is defined and n.(z)1 E ~&y)~ so (z)o-(n.(z)l) is 

either 0 or n. (z)~, in both cases in $(Y)~. So 3f((p) t-y $. 
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However, if f is surjective, as most projections are, 3f (cp) and Vf (cp) are isomor- 

phic to ~Y.CJ~~~)=~ ma9 Ufcxj=y (~(4~) and ~y.(nf~x~=Y CPW~~ flfcxj=y wp). 
Summing up, we have almost verified (the remaining details are left to the reader, 

who may wish to have a look at Theorem 1.4 of [3]): 

f Proposition 1.2. The assignment X H Rx, (X---f Y) H Rf, defines a tripos on Set 

We call the topos represented by this tripos, Mod. 

We shall have use for the following general construction. For this, it is necessary to 

know that the notion of a tripos is valid over any category C with finite limits (finite 

products suffice, in fact), not just Set; if 9 is a tripos on C, the topos represented by 

9 is called P-C. 

The “constant objects” functor is the functor A or A9 : C -+9-C defined on objects 

by A(x) = (x, 3 &TX)) where 6 : x -+ x x x is the diagonal, and on maps by: A(x f, y) 
is the map represented by the functional relation 3tidx,f,(Tx) E 9(x x y). The following 

theorem is due to Andy Pitts [lo]: 

Theorem 1.3. Suppose 9 is a tripos on C and 93 a tripos on 9-C such that 
A@ : 9-C + LA!-(P-C) preserves epimorphisms. Then the composite 5% o A2 (as a 

pseudofunctor: C”P -+ Cat) is a tripos on C, and the toposes W-(9-C) and 
(92 o A>p)-C are equivalent by an equivalence which commutes with the A’s 

involved. 

We only use this theorem to obtain the following easy consequence: 

Corollary 1.4. Let S be the set {(A,@ E P(N)* ) A LB} and define + on S just as 
for R, as well as the preorder on Sx. 

The assignment X ++Sx yields a Set-tripos, and the topos represented by this tripos 

is the effective topos built on Set”‘, which we denote by &fl._. 

Proposition 1.5. There is a geometric inclusion of triposes RX 5 Sx; hence, Mod is 

a sheaf subtopos of @f._,. 

Proof. Since R c S we have RX c Sx. Left adjoint to this is the map induced by the 

function @:S--,R: 

@(A,@ = (A+$+ u {O}), 

where A+ = {a + 1 1 a E A}. The adjunction is immediate, and Qx preserves finite 

meets. 0 

There is, in complete analogy to the inclusion Set -+ &fl, an inclusion of toposes 

Set”. -+ &“._.. Let (Vz)* : Set”’ -+ &fl.,. be defined as follows: (Vz)*(Xs Y) = 
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(X Ll Y, =) where X U Y is the disjoint union of X and Y and 

(N,N) ifz,z’EX andz=z’(l), 

[z =z’] = (0,N) if not (l), but [;I@)= [p,](z% 

I (03 0) otherwise, 

For a morphism 

its image (Vz)*(y) is represented by the functional relation F E S(xuy)x(x’uy’) 
where 

[ (N,N) if z EX,Z’ E X’ and ys(z) =2’(l), 

F(z,z’) = (0, A’) ifnot(l),butgro[z](z)=[?m](ll)tYi’ 

I (03 0) otherwise. 

For (X,=) an object of &“.,., write =o,=t for the two components of =, i.e. [x = 

x’] = ([x =() x’],[x = 1 x’]). Then (Vz)*(X,=) is X0 11, Xt where Xi = {x E XI [x =i 

x]l # Q))/ -i3 x y x’ iff [x =i x’ 11 # 0, and d the obvious map. 

There are two embeddings from Set into Mod. The constant objects functor d sends 

the set X to (X, =A) where 

There is another functor, V : Set -+ Mod, defined by V(X) = (X, =p) where 

if x = x’, 

if x # x’. 

Ix =rCc’] = 
(N,N) ifx=x’, 

(0, N) if x # x’. 

As noted by Hyland and Ong, since the topos R(-) is &standard (see [3]), by 4.5 of 

that paper V is direct image of a geometric morphism Set + Mod, the inverse image 

of which is the global sections functor. This geometric morphism is an inclusion, and 

presents Set as -T-sheaves in Mod. 

The topos Set”; being sheaves over Sierpinski space, has two points 0,l : Set -+ 

Set”‘. We have O*(X) = (X%,X), l*(X) = (Xi l), O*(Xf Y) = Y and l*(XL 

Y) = X. Moreover, there is a 2-cell M : 1 =? 0 (Recall that in the 2-category Top 
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of toposes and geometric morphisms, a 2-cell o! : f + g is a natural transformation 

cc*:f* =+ g*, equivalently, a natural transformation a* : g* + f *). Let us denote the 

inclusion Mod -+ &“._. by i. 

Proposition 1.6. The functors V and A are isomorphic to i*(V’>*l* and i*(Vz)*O* 

respectively. 

Proof. Easy verification. I7 

We can extend the picture. We have also a geometric morphism 6” -% &fl._., 

induced by the diagonal embedding of S( N ) into S and the map back, which sends 

(U, V) to V. 

Moreover there is a geometric morphism v : Mod + &‘fs induced by the maps 

(U,V) H u : R -+ S(N) and A H @+,A+ U(0)) : P(N) -+ R. The triangle of 

geometric morphisms: 

does not commute, but there is a 2-cell p : i =S 6~. The component /II* : i* + v*6* 

is induced by the entailment (U+, V+ U (0)) t- (V+, V+ U (0)) in R’; i.e., /I* is the 

composition 

where the last two arrows are isomorphisms. Therefore, /?* is an isomorphism on 

objects in the image of &, i.e. 

is an isomorphism. 

Let us denote the inclusions of Set into Mod and 8” by V’,, VM, respectively. 

Proposition 1.7. The diagrams 

Mod i JR.,. 47 2 &ff .+. Mod u 8ff 

VU T Tvi viT TE v+ /vE 
Set A Set”’ Set F Set”’ Set 

1 0 
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commute up to natural isomorphism. Moreover, the 2-cells Vza and /I 1: 0~ coincide 
module these natural isomorphisms, i.e. the composites 

Vzol% vzoo 

and 

02 0 1 E i 0 0~ ‘**? 6 0 v 0 VM 2 6 0 0~ E! Vz 0 0 

are equal. 

It follows that the fiurctor A: Set --+ Mod is isomorphic to u*( VE)*, for we have 

A g i*( V&O* z i*&( VE)* 8**6$Q)* v*6*6*( Q)* = v*( &)* 

and we know that /?* + & is a natural isomorphism. 

2. 8”ff and Mod as subtoposes of &fJ.,. 

Let U = ({*}, =) be the subobject of 1 in &fl._. defined by [ * = * ] = (0, N). 

Proposition 2.1. (1) &+fl is the open subtopos of 8fl.,. determined by the object U, 
and Mod is its closed complement; 

(2) The two commuting squares in Proposition 1.7 are pullback squares in Top. 

Proof. We have 5 internal topologies in &fl._. which I denote by ko, kl, kz, kE, k,; 

they correspond respectively to the inclusions Set y Efl.,., Set 2 &“fs._., Set”’ 2 

J?fl._., &ff 5 &ff._. and Mod -‘, &“.,.. 

For each j E (0, 1,2,E,M}, kj is induced by a map Kj : S --+ S. These maps are 

given by 

KoV,W = (in E N I B # 01, in E N I B # 8)), 

KIGQ) = (in E RJ IA # 01, N), 

K,,&l,B) = (A+$+ U (0)). 

Now clearly, in Ss, the maps KE and (A,B) ++ ((8, lV) + (A,B)) are isomorphic, 

whence kE is internally given as Rw : s2.u +- w, u being the point of 52 which classifies 

the inclusion U --+ 1. By the definition of open subtoposes [5], 8” is the open subtopos 

determined by U. Likewise, the map KM is isomorphic (in Ss) to (A,B) +-+ ((8, N) V 

(A,B)), so kM is internally the topology Iw : s2.u V w, which is the complement (in the 

lattice of internal topologies) of kE. This proves statement (1). 
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For the second statement, since both diagrams are diagrams of inclusions, it is enough 

to prove that ki is the join of k2 and /CM, and ks is the join of k2 and &. This is 

immediate from the equalities Ki = K2 o KM and Ko = K2 o KE. q 

Corollary 

In fact, 

2.2. Every kM-closed subobject is kE-dense, and every map from a kM- 

object to a kE-separated object is constant. 

there are two other topologies which belong in the picture, viz., the meets 

k2 A kE and k2 A kM. Abusing notation, 

k2 A kE (A,B) = 
(B,B) if A # 0, 

(0,B) else 

and 

kz A kM(A,B) = 
(A+,B+U{O}) if B # 0, 

(09 0) else, 

and we have 

I = id, 

as a sublattice of the lattice of internal topologies in &fi._ 

3. Subobjects of V’s, A’s and projectives in Mod 

In this section, I characterize the full subcategories of Mod on, respectively, the 

objects which are subobject of a V(X), those which are subobject of a A(X) and the 

projective objects. 

The characterization of the sub-V’s was already given, without proof, by Hyland 

and Ong. For completeness’ sake and for understanding, I give a proof. The global 

sections functor r : Mod -+ Set can be rendered as : T(X, =) = X,/-J where X0 = {x E 

XI ix = xla # 0) and x4 iff [x = x’Ba # 0; if F:X x Y -+ R represents a morphism 

f : (X, =) + (Y, =) then r(f) sends the class [x] to the unique class [y] for which 
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F(x, yX # 0. Given a function f : T(X, =) --) Y in Set, its transpose : (X, =) -4 V(Y) 

is represented by 

F(xyy) = { 
[x=x] 
(0,1x = xjp) 

Therefore the unit q : (X, =) --f VT(X, =) is represented by H :X x iGo/- -+ R where 

H(x, [x’]) = [x = n ] if x E [x’], and (0,[x = x]lP) otherwise. 

if x E X0 &f([x]) = y, 

O.W. 

Proposition 3.1. For an object (X, =) of Mod, the following 
1. r,+(~,=) is a monomorphism; 

2. (X,=) is 77-separated; 
3. (X, =) is isomorphic to an object (Y, =) of the form: 

UY = Y’D = { 
(A,?B) if Y = Y’, 
(0,B) O.W. 

with A, # 0 for all y E Y, and B constant (of course, 0 E B 

Proof. 1 =5 2: Suppose v mono; so 

H(x, [z]) A H(x’, [z]) =+ x = x’ 

are equivalent: 

and all A, c B). 

holds. Suppose a is an actual realizer of this. Furthermore, suppose be E [x = x10, 

br~[x’=x’]loandb~~ ll[x = ~‘10. Then [x] = [x’], bs E H(x, [xl), bl E H(x’, [x’]) 

so a.(bo,bl) E [x = ~‘10; similar for potential realizers. So 

holds and (X, =) is ll-separated. 

2 * 3: Suppose a is an actual realizer of x = x Ax’ = x’ A -+x = x’) * x = x’. 

Let Y = T(X, =) and put A, = Ux,x,Ey[x = x’n, and B = U,,,,,,[x = ~‘1~. Then 

(X, =) and (Y, =) are easily seen to be isomorphic, via F : X x Y -P R where 

W, Y) = 
([x=x]a~Ay,[~=~]p~B) ifxEy, 

(0,Ux = xnP x B) O.W. 

The implication 3 + 1 is left to the reader. q 

The full subcategory of Mod on the ll-separated objects can be described as fol- 

lows: objects are triples (X, {A, (x E X},B) where X is a set, 0 # A, C B C N and 

0 E B; maps from (X, {A, 1 x E X}, B) to (Y, {C,] y E Y},D) are functions f : X + Y 

such that (nxEX A, -+ CfcX)) II (B --t D) is nonempty. 

As to the sub-d’s, the description of the objects is almost as simple, but the mor- 

phisms are different. Thomas Streicher defined the following category, which he calls 

the category of modzjied assemblies ModAss: 
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Definition 3.2 (Streicher). A modified assembly is a pair (X, 4) with X a set and 
4 : X -+ R such that 4(x), # 0 for all x E X. A morphism of modified assemblies 
(X, 4) --) (Y, $) is a function f : X -+ Y which is tracked in the sense that 

n (4(x) * WG)))ll 
XEX 

is nonempty. Modified assemblies and morphisms form a category ModAss. 

There is, as will be seen explicitly below, an embedding ModAss --) Mod which 
takes values in the sub-d’s: (X, 4) is sent to a subobject of d(X). The question therefore 
arises whether ModAss is equivalent to the full subcategory of Mod on the sub-A’s. 
There are two obstacles here. 

The first one is the requirement that $(x)~ # 0 for all x E X. Consider the object 
(N, =) where 

({n+l},{O,n+l}) ifn=m&nEK, 

[n = m]l = (0,{O,n+ 1)) ifn=m&n#K, 

(09 (0)) else 

(K is the halting set). 
Clearly, (N, =) is a subobject of A(N) but it is not isomorphic to any object in the 

image of ModAss, since that would imply the decidability of K. 
The other obstacle is that the embedding ModAss --) Mod is not full. Consider the 

two objects (X,4) and (Y,+) of ModAss with X = {xt,x~}, Y = {yl,y~}, 4(x1) = 

$(yl) = ({l},{O,l}), 462) = ({2),{0,1,2)) and $(Yz) = ({2},{0,2}). -here is a 

morphism in Mod between them, represented by the function F : Xx Y --) R defined by 

WLYI) = ({l),{O, 111, 
F(xl,~z) = (0,(O)), 
F(xz,Y~) = (0, (0, I}), 

W~>YZ) = ((21, {0,2}). 

Strictness and totality of F are realized by (a code of) the identity function. Re- 
lationality is easy, and single-valuedness is realized by sending the pair (n, m) to n 
if n = m, and to 0 otherwise. Now this morphism cannot come from a ModAss- 

morphism which is a function f : X -P Y; suppose e E &,(4(x) + $( f (x)))=. Since 
1 E &XI )a 17 am, we must have e.1 E J/(f (xl))a II Il/(f (x2))p which, by inspection 
of (Y, $), implies that f (x1 ) = f (x2); but then F cannot represent the image of f. 

Convention. From now on, in talking about ModAss, we drop the requirement on 
objects (X, cp) that cp(x)= # 0 for all x E X. 

Every cp E Rx is automatically a relation for the equality =A and determines therefore 
a subobject of A(X), viz., the object (X, =) where lx = X’ ]I = V(X) A [x =A x’ 1, and 
every subobject of A(X) arises in this way. 
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The predicate q(x) A [x =A x’ ] is, in Rxxx, isomorphic to the function which sends 

x,x’ to (rp(x),f,cp(x); u (0)) f - i x - x’, and to (0, (0)) else; therefore, every sub-d is 
isomorphic to an object (X, =) where 

[x &]I = 

i 
cp(x) if x = x’, 

(0, (0)) else 

for some cp E Rx such that 0 $ q(x), for all x. I call objects of this form canonical 
sub-d ‘s. 

So every sub-d is the i*-image of an object (X,=cp) of c?“.,. where now 

[x =cp x’] = 1 q(x) if x = x’, 

(0,0) else 

for some cp E Rx arbitrary. The objects (X,=) of CL?‘._,. such that i[x = x’] = (0,0) 
whenever x # x’ are precisely the subobjects of some (020)*(X); the fact that cp E p 
rather than Sx means that the (X, =q) are the kM-closed subobjects of objects in the 
image of (VzO)*. 

Now any morphism in &fl.,. between such objects is uniquely determined by a 
function on the underlying sets which is tracked in the sense of ModAss. Therefore 
we have, noting that ( VZO)Y is the inclusion of the ll-sheaves in &7.,.: 

Proposition 3.3. ModAss is equivalent to the full subcategory of J@T._. on those 
objects which are a kM-closed subobject of a TT-sheaf 

The full subcategory of Mod on the sub-d’s is a localization of this by a calculus of 
fractions. Freely invert those arrows in ModAss which are, from the point of view of 
Efl,,., kM-almost iso (i.e. their i*-image is iso). This is because of the isomorphism 
of A and i*(VIO)*: a sub-d is the same thing as a kM-closed subobject of some 

(VzO)*(X). Now the sub-d’s are closed under products in Mod, so if A L B is a map 
between sub-d’s in Mod, the graph of f, as subobject of A x B, is also a sub-d and 
corresponds therefore to a kM-closed subobject of some (VzO)*(X), with projections 
to the objects corresponding to A and B, respectively, the first being kM-almost iso. 

I want to give a concrete description of the sub-d’s in terms of Mod_&. We need 
some structure of ModAss (familiar from ordinary assemblies) and a representation of 
ModAs.+morphisms which are, in 8ff .~. , kM-dense inclusions: 

ModAss is regular: the pullback of 

(JQ) f 

K*) 

1 9 is (X xz Y,w) with 

(Z x) 

w(x, y) = (C&X), )(/(y)) and X xz Y is the pullback in Set. 
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A morphism (X, cp) ft (Y, II/) is regular epi iff 

n( ( NY> =+- u &)a, u (P(x)p # 0. 
YEY I (x)=y .f (x)=y )I a 

To describe the kM-dense inclusions we recall that kM = lo : i2.u V w and define: 

Definition 3.4. Given an object (X, cp) of ModAss, a relatively recursive subset of q is 

a set P such that UxEX P(X), C P L UxEX (PC& and there is a partial recursive function 

f, defined on IJxEX qua, such that P = (IJ,,, (Pi) n f-'(O). 
Given such P, we define the object (Xp, (pp) where Xp = (x E X 1 ADS n P # 8) 

and ~(4 = (~o(&, ((PC& n P) u UN 

(X&qp) is an object of ModAss, the inclusion (Xp, qp) + (X,cp) is kM-dense and 

every kM-dense mono in ModAss is isomorphic to one of this form. 

Proposition 3.5. Let C be the class of ModAss-morphisms (X, 50) f, (Y, Ic/) such that: 

1. There is a relatively recursive subset P of $ such that f factors as (X, SD) 2 

VP$P) -+ K$) and f ’ is a regular epi in ModAss; 
2. if (Z,x) 2 (X, cp) is the kernel pair of f, there is a relatiuely recursive subset 

Q of x such that the composite (ZQ, xp) --+ (Z, x) + (Y, 9) is mod. 
Then the full subcategory of Mod on the sub-A’s is equivalent tu ModAss[CL1]. 

Projectiues in Mod. The study of projectives in Mod is facilitated by the fact that 

the functors i* : Mod -+ &‘fl._. and (V2)* : Set”’ -+ &fl.“.,. both preserve epi’s; 

their left adjoints therefore preserve projectives. 

As the projectives in Set”’ are exactly the manic arrows in Set, a projective 

object (X,=) in &fl._. will have [x = x’jp = 8 whenever [x = ~‘1, = 8, for 

x # x’. In complete analogy to the situation for 88 (see [ll]) we arrive at the 

characterization of projective objects in &fl._. as, up to isomorphism, objects (X, =) 

such that [1x = x’ 1 = (8,0) if x # x’, and [x =x] is (0,(n)) or ({n},(n)) for some n. 

Every object of Bfl.,. is covered by a projective object so every object of Mod is 

covered by a projective object. This easily implies that the projectives in Mod are of 

form (X, =) where [x = x’ ] = (0, {0}) if x # x’, and [x = xl is either (0, {O,n + 1}) 

or ({n + l}, {O,n + l}) for some n: that is, the i*-image of a projective in &fl._.. 

Suppose F : X x Y --t R represents a morphism in Mod between two such objects 

(X, =) and (Y, =). There are partial recursive functions tot and sv such that 

tot f n ux =x~ +- u F(~,~),, u ~~~~~~~ , 
XEX ( ( YEY YEY 1) a 



286 J. uan OostenlJournal of Pure and Applied Algebra 116 (1997) 273-289 

sv E n (mY)Aw,Y’) =+ UY = Y’l)a. 
xe, y, .!J’ E Y 

Let PC_UxCx[x=xDP be defined by 

P= nE U[x=.],~sv((tot(n),tot(n)))#O 

i 

. 
XEX I 

Then P is a relatively recursive subset for I[ . = . ] since U,,_ I[x = x Ia E P. 

For XP = {n E X ( Ix = x BP rl P # O}, the predicate F determines a function 
f : XP + Y. If Y is a one-element set, this is the unique function; if Y has more 

than one element, since sv((tot(O), tot(O)))=O, for x E& and n unique with n + 1 E 
[x = xlP n P, there is a unique y with tot(n) E F(x, y). 

Then the predicate [ x = x ]I A I[ f(x) = y ] is a functional relation which is isomorphic 

to (the restriction to Xp x Y of) F. 
Thus, we arrive at the following characterization of the projectives in Mod, in the 

style of [ll]. 

Proposition 3.6. Let % be the category given by: 
l Objects are diagrams X -+ Y + I such that X -+ Y is an inj’ective function of sets 

and Y -+ I is a surjection of Y onto a subset of B; 

l morphisms are commuting diagrams 

with cp partial recursive. 
Let C be the class of morphisms 

X-Y’-J 

for which J -+ I is an inclusion of a subset which contains the image of X and is 
moreover such that for some partial recursive f, defined on I, J = I fl f-‘(O); and 
the right hand square is a pullback square in Set. 

Then the category %‘[C-‘1 is equivalent to the full subcategory of Mod on the 
projective objects. 
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4. A general “Independence of Premiss” principle for &“f.+. 

Definition 4.1. Let us call an object (Y, =) of &“._. diagonal if 

n(~y=y],+iy=y].)#0. 
YEY 

Every diagonal object is isomorphic to an object (Y, =) such that I[ y = y ] is of the 
form @,A). Every kE-sheaf (i.e., object of &fl) is diagonal, but also objects in the 
image of (02 l)* are. All diagonal objects are quotients of kE-sheaves. 

Proposition 4.2. An object of @f.,. is diagonal if and only if its kE-separated re- 

flection is already a kE-sheaf, equivalently, if its canonical map to its kE-sheajication 
is an epimorphism. 

Proposition 4.3. Let (X, =) and (Y, =) be objects of &“.,. with (Y, =) diagonal; let 
A(x) a kl-closed subobject of (X, =) and B(x, y) an arbitrary subobject of (X, =) x 
(Y, =). Then the principle 

Vx E (-7, =).[(A@) + 3y E (Y, =).&,Y)) --t 3~ E (K =).(4x) + &x,y))l 

holds. 

Proof. Let us write E(x), E(y) for [x = n], I[ y = y]. 
Since A(x) is ki-closed there is a partial recursive function f such that for all x E X 

and n E Em, f(n) E [A(x)llP and moreover, if n E E(x), and [A(x)]~ is nonempty, 

then f(n) E [A(x)]~. 

Let 9 E n,Eyay), + Ed and cp be the partial recursive function 

~n.~w.(g$w.f(n))o, Ww~f(n)h). 

I claim that cp is an actual realizer of the principle in the proposition, which I abbreviate 
as Vx E (X,=).[@(x) -+ a(x)]. We have to show 

(1) n E Ed * V(n) E @(x)~ --) Ed, 

(2) n E E(x), * cp(n) E Q(x), -+ E(x)=. 
As to (l), let n E Ed, w E @(x)~. Since f(n) E [A(X)],,, w.f(n) is defined and 

in [IY E (Y,=).Wx,y)], so for some y E Y, (w.f(n))o E E(y), and (w.f(n))i E 

U%Y)D,. ‘l-hen s$w.f(n))o E E(Y),CE(Y)~, ad Mw.f(n)h E [&)I, -, 

I[&,y)DpT so cp(n) E @(x>p + %jp. 

As to (2), let n E E(x),. We have f(n) E IA(x and if [A(x)]l= is nonempty, 
then f(n) E [A(x) Let w E @(x)~. Again, w.f(n) is defined, and there is y E Y 
with g$w.f(n))o E E(y), and (w.f(n))l E [B(x, y)jP. But if v E [A(x)], then f(n) E 

IIA(x)la so w.f(n) E I[ 3~ E (Y, =Mx, ~11~~ i.e. for some y E Y, g(w.f(n))o E Ed 

and (w-f(n))1 E [B(x,y)ja. So Av.(w.f(n))l E [A(x)]la --+ [B(x,y)],. The rest is left 
to the reader. 0 
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Troelstra [ 131 calls the following principle in arithmetic: 

(T&) + 3Y.%Y)) + 3Y.(~&) + %Y)), 

the Independence of Premiss principle (IP). He shows that IP is valid under modified 

realizability (a fact which is also quoted in [4]). This is a consequence of Proposi- 

tion 4.3, since (for ZJ E Q as in Proposition 2.1) u is ki-closed and so is therefore 

A(x) -+ U, which is the meaning in &fl._+. of the negation in Mod; and the natural 

numbers object in &fl._. is a &-sheaf, so diagonal. 

Further directions 

In this section I mention some further issues and topics for research. 

4.1. Mod over &?fl 

Since every object of Mod is a subquotient of some A(X) and A N v*VE, every 
object of Mod is a subquotient of some v*(X); this is to say that v : Mod -+ 88 

is Zocalic and that Mod is sheaves (in 8#) on the internal locale v*(Q) in 8’. Yet 

another way of saying this is that Mod is the classifying topos for a propositional 

theory in ~$7. 

It would be nice to have a description of this theory. A natural way to start is to 

look at the object of points of v*(Q), but this did not bring me much enlightenment. 

4.2. Internal complete categories in Mod 

There should be several of these, and it is probably easier to consider them from the 

point of view of &ff._.. Hyland and Ong introduce the category of “PER-extension 

pairs”: these are objects (X, {A, 1 x E X},B) as in the description of the ll-separated 

objects in Mod (Proposition 3.1), satisfying A, n A, = 0 for x # y. In &“,_. these 

are the kl -separated subquotients of the object (N, =) with I[ n = m ] = ({n}, N ) if 

n = m, and (0, N) else; that is the ki-separated reflection of the natural numbers object 

in &fl._.. A proof that this gives an internal complete category (at least with respect 

to the l--separated objects in Mod) should be possible via the orthogonality approach, 

basically due to Peter Freyd, and given in [I 11. 

4.3. Mod over a c-pea 

As Hyland and Ong show, one can build a modified realizability topos over a struc- 

ture weaker than a partial combinatory algebra, namely a partial applicative structure 

with elements k and s where the applications sf and sf g need not be defined. They 

point out that the construction of an effective topos over such a c-pea fails, and for 

the same reason the construction of &fl._. fails. 
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It seems to me legitimate to ask, whether maybe every c-pea U can be embedded in 

a partial combinatory algebra A such that they yield equivalent modified realizability 

toposes. 

4.4. Axiomatization of modiJed realizability 

A straightforward axiomatization for modified realizability can be given, in a system 

of first order arithmetic extended by a propositional constant u (for the object U of 

Proposition 2.1). This will be done in a subsequent paper. 
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